The Weak and Strong Lefschetz properties for Artinian K-algebras
نویسندگان
چکیده
منابع مشابه
The strong Lefschetz property for Artinian algebras with non-standard grading
Let A = ⊕ i=0Ai be a graded Artinian K-algebra, where Ac 6= (0) and charK = 0. (The grading may not necessarily be standard.) Then A has the strong Lefschetz property if there exists an element g ∈ A1 such that the multiplication×g c−2i : Ai −→ Ac−i is bijective for every i = 0, 1, . . . , [c/2]. The main results obtained in this paper are as follows: 1. A has the strong Lefschetz property if a...
متن کاملOn the Weak Lefschetz Property for Artinian Gorenstein Algebras of Codimension Three
We study the problem of whether an arbitrary codimension three graded artinian Gorenstein algebra has the Weak Lefschetz Property. We reduce this problem to checking whether it holds for all compressed Gorenstein algebras of odd socle degree. In the first open case, namely Hilbert function (1, 3, 6, 6, 3, 1), we give a complete answer in every characteristic by translating the problem to one of...
متن کاملGeneric Initial Ideals and Graded Artinian Level Algebras Not Having the Weak-lefschetz Property
We find a sufficient condition that H is not level based on a reduction number. In particular, we prove that a graded Artinian algebra of codimension 3 with Hilbert function H = (h0, h1, . . . , hd−1 > hd = hd+1) cannot be level if hd ≤ 2d + 3, and that there exists a level Osequence of codimension 3 of type H for hd ≥ 2d+k for k ≥ 4. Furthermore, we show that H is not level if β1,d+2(I ) = β2,...
متن کاملA Tour of the Weak and Strong Lefschetz Properties
An artinian graded algebra, A, is said to have the Weak Lefschetz property (WLP) if multiplication by a general linear form has maximal rank in every degree. A vast quantity of work has been done studying and applying this property, touching on numerous and diverse areas of algebraic geometry, commutative algebra, and combinatorics. Amazingly, though, much of this work has a “common ancestor” i...
متن کاملStrong Topological Regularity and Weak Regularity of Banach Algebras
In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2003
ISSN: 0021-8693
DOI: 10.1016/s0021-8693(03)00038-3